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Abstract—In this paper, the Bayesian analysis of right truncated 

Weibull distribution is considered under type II censored data. Bayes 

estimators and corresponding risks have been derived using 

symmetric and asymmetric loss functions. Bayesian estimators of the 

parameters  have not explicit forms, so we cannot solve analytically 

and that's why we applied the Monte-Carlo methods to find the 

results, especially the Metropolis-Hastings algorithm. Finally, we use 

Pitman closeness criterion and integrated mean square error (IMSE) 

to compare Bayesian and likelihood estimators (MLE). 

Keywords—Bayes estimators, generalized quadratic loss function, 

Linex loss function, Risk loss function Pitman criterion, Metropolis-

Hastings algorithm. 

I. INTRODUCTION 

RUNCATED statistical distributions arise when a random 

variable X follows a known distributional model, except 

that a portion of the sample space cannot be observed. If 

values of the random variable falling below a certain lower 

limit T are not observed at all, the distribution is said to be 

truncated on the left at T. A truncated distribution is defined as 

a conditional distribution that results from restricting the 

domain of the statistical distribution. Hence, truncated 

distributions are used in cases where occurrences are limited to 

values which lie above or below a given threshold or within a 

specified range. If occurrences are limited to values which 

lie below a given threshold, the lower (left) truncated 

distribution is obtained. Similarly, if occurrences are limited to 

values which lie above a given threshold, the upper (right) 

truncated distribution arises (see, e.g, Dusit and Cohen 

(1984)). Wingo (1988) proposed point estimation 

of parameters for a doubly truncated Weibull distribution. 

Mittaland (1989) investigated the problem of existence of the 

MLE for the truncated Weibull distribution, where the 

truncation point is assumed to be known. Martinez (1991) 

studied the MLE of parameters of the upper truncated Weibull 

distribution. Shalaby and El-Yousef (1993)  presented 

bayesian estimates of parameters for  a doubly truncated 

Weibull distribution and Shalaby (1993) discussed the 

Bayesian risk of the estimation. Seki and Yokoyama (1993) 
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developed a simple and robust estimation method for the 

Weibull and truncated Weibull parameters. Balakrishnan and 

Mitra (2012) applied the EM algorithm to estimate the 

parameters of Weibull distribution when the model is 

truncated at left and data are right censored. 

The Weibull distribution is a very popular distribution for 

modeling lifetime data. Indeed, left truncation and right 

censoring are often observed in lifetime data. For example, 

failures during the warranty period may not be counted. Items 

may also be replaced after certain timen following the 

replacement policy, so that failures of the item are ignored. 

Also, the truncated Weibull distribution can be used in several 

engineering fields (see Zutter et al, 1986, Maltamo et al, 2004, 

Palahi et al, 2007). Several authors have studied the parameter 

estimation of the truncated Weibull distribution and its 

application. Zhang and Xie (2011) studied the characteristics 

of the upper truncated Weibull distribution and parameter 

estimation by graphical approach. Kantar and Usta (2015) 

proposed, for the first time, the use of upper-truncated Weibull 

distribution, in modeling wind speed data and also in 

estimating wind power density. Using wind speed data 

measured in various regions of Turkey, upper-truncated 

Weibull distribution can be an alternative for use in the 

assessment of wind energy potential. 

In this paper, we study the estimation of the right-truncated 

Weibull distribution which depends on three parameters. Two 

approaches are proposed. The first one is the classical 

maximum likelihood estimation (MLE). The second one is the 

Bayesian procedure performed under the generalized quadratic 

(GQ), the entropy and the linex loss functions. Using an 

exhaustive Monte- Carlo study, we compare the Bayesian 

estimators with respect the posterior risks (PR). 

Then, we select the best estimator given by each loss function. 

These three bayesian estimators are compared to the maximum 

likelihood estimator (MLE) using Pitman closeness 

criterion and the integrated mean square error (IMSE). 

The rest of this paper is organized as follows. In section 2, we 

present the model and the problematic. The section 3 deals 

with the maximum likelihood estimation. In section 4, we 

propose the Bayesian estimators under various loss functions 

and different prior distributions. 

A Monte -Carlo study is proposed in section 5. 

Posterior analysis of the compound truncated 

Weibull under different loss functions for 

censored data. 
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II. THE MODEL 

Consider a random variable distributed according to the right 

truncated Weibull distribution with the parameters (α > 0, β> 

0) and the density given by: 
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The corresponding reliability function is defined as follows 
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the failure rate is 
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The k
th 

 moment of the right truncated Weibull distribution is 

given by the following formula 
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III. LIKELIHOOD ESTIMATION 

Consider a n-sample (t1, t2... tn) generated from right-truncated 

Weibull model and a fixed constant m € {1, 2,. . . n}. The data 

are assumed to be censored with type II. i.e. The observations 

(t1, t2, ..., tm) are observed only. The likelihood function is then 
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Then, we have 
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And the corresponding logarithm is 
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The MLE estimators of the three parameters α, λ and T are 

solutions of the vectorial equation 
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Then, the likelihood equations are as follows 
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After algebraic transformations, we obtain the following non linear system 
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There is no analytical solution of this system. Then, we need 

numerical methods to obtain approximate values of the 

maximum likelihood estimators’ αMLE, λMLE, and TMLE of the 

parameters α, λ, and T respectively. In this paper, we will use 

the R package BB which has high capabilities for solving a 

nonlinear system of equations (Varadhan and Gilbert, 2009). 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 266



 

 

III   BAYESIAN ESTIMATION UNDER DIFFERENT LOSS FUNCTIONS 

Prior and posterior distributions 

In this section, we consider the prior distribution of (α, λ) 

(Shalaby and El-Youssef, 1993) defined as follows 
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Moreover, we choose the improper prior of T, which not 

depend on (α, λ) and given by π(T)=1/T. Then, the prior of  

(α, λ, T) Is 
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Moreover, we obtain the posterior density 
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 A. Loss functions 

We consider the generalized quadratic (GQ), the Linex and the 

entropy loss functions. The following table presents these loss 

functions and the expressions of the Bayesian estimators with 

The corresponding posterior risks (PR).

  

 

 

Under the generalized quadratic loss function assuming 

τ(θ)=θ
β-1

, the Bayes estimators are given by the formulas 
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The corresponding posterior risks are then 
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Notice that, when  β= 1, we have the basic quadratic loss. 

Under the entropy loss function, we obtain the following 

estimators 
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The posterior risks are 
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following estimators Under the Linex loss function, we obtain 

the  
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Since, we cannot calculate the analytical expressions of all 

these estimators; we will use MCMC procedures as 

Metropolis-Hastings algorithm in the following Monte Carlo 

section. 

IV MONTE CARLO STUDY 

In this section, we propose to perform a Monte Carlo study 

assuming that a = 2, b = c = 1, α = 1, λ= 2.0 and T = 1.5. Then, 

using N = 1000 samples of the right truncated model, we 

obtain the following results. 

A. Likelihood estimation 

Since analytical formulas are not available, to obtain the 

maximum likelihood estimators, we need to use numerical 

procedures. In this section we will use the R package BB 

which presents very high performances for non linear systems. 

In particular, we need the function BB solves in BB for our 

problem. This function offers a reliable, low-cost method to 

solve large-scale nonlinear systems of equations (Varadhan 

and Gilbert, 2009). The results are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n m parameter mle 

10 7 α 

λ 

T 

0.6951(0.0929) 
1.9800(0.0003) 
1.9452(0.1660) 

30 21 α 

λ 

T 

0.9036(0.0092) 
2,0003(1,07.10-7) 
1.6203(0.0144) 

50 35 α 

λ 

T 

0.9364(0.0040) 
2.0367(0.0013) 
1.5945(0.0089) 

100 70 α 

λ 

T 

0.9943(3,22 10− 5) 

2.0368(0.0013) 
1.5149(0.0002) 

200 140 α 

λ 

T 

0.9268(0.0053) 
2.0957(0.0091) 
1.6457(0.0212) 

Tab. 2: The MLE of the parameters with quadratic error (in brackets) 

 

 

We remark that the estimated values of α and λ are close to the 

true values of parameters. However, the estimation of T Is not 

close to the true value. 

B. Bayesian estimation 

The bayesian estimators are obtained with performing the 

MCMC methods. The table 1 presents the bayesian estimations 

and the corresponding posterior risks, in brackets, under the 

generalized quadratic loss function. We remark that the value 

β= −2 gives us the best posterior risk and then improve the 

basic quadratic case. Also, we obtain the smallest suitable 

posterior risk when n is high. This is illustrated by the figure 1. 
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Figure1. Posterior risks of α, λ and T under generalized 

quadratic loss function 

With the entropy loss function, we obtain the following table 

where we can notice that the value p = −0.5 and the cases  

 n = 100 and n = 200 provide the best posterior risk. 

 

The following figure illustrates well this situation. 
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Figure2.  Posterior risks of α, λ and T under Linex loss 

function 

Under the linex loss function, the results are given in the 

following table. 

 

 

 

 

 

 

One can notice that the value r = −0.5 provides the best PR 

(see figure 3). 

 

 

 

 

Figure2.  Posterior risks of α, λ and T under the Entropy 

loss function 

If we compare the three loss functions, we notice that the 

entropy loss function provides the best Bayesian estimator of 

α, λ and T. This Is illustrated by the following table 
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A. Comparison with the likelihood estimators 

In this section, we propose to compare the best Bayesian 

estimators obtained above with the maximum likelihood 

estimator. For this, we propose to use the following criterions: 

the Pitman closeness (Pitman, 1937, Fuller, 1982 and Jozani, 

2012) and the integrated mean square error (IMSE) defined as 

follows: 

    Definition 5.1 An estimator θ1 of a parameter θ dominates in 

the sense of Pitman closeness criterion another estimator θ2, if 

for all θ € Θ 

  5.0... 21   P  

Consider the estimates θi (i=1… N) Obtained with N samples 

of the model. 

    Definition 5.2 the integrated mean square error is defined as 

N
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In the following, we present the values of the Pitman 

probabilities which allows us to compare the bayesian 

estimators with the MLE under the tree loss functions where 

β= −2, p = −0.5 and r = −0.5. The Table 5 should be read as 

follows : when the probability Is greater than 0.5, the bayesian 

estimator Is better than the MLE estimator. Then, we notice 

that, according to this criterion 

- When n is not high, the Bayesian estimators αB  and  TB of  α 

and T are better than the MLE’s αMLE  and TMLE. The 

generalized quadratic loss function provides the best values. 

However, λMLE   is closer to the true value than all the bayesian 

estimators. 

- When n is high, the MLE of the three parameters perform 

better than the Bayesian estimators. 

 
The Table 6 presents the values of integrated mean square 

error (IMSE) of the estimators Bayesian of the parameters 

under the tree loss function, and the maximum likelihood 

estimators. 

According to this criterion, when n Is small, the Bayesian 

estimators αB   and  TB  provide the smallest IMSE for α and T 

comparatively to αMLE  and TMLE. Also, the values provided by 

the generalized quadratic loss function are relatively 

equivalent to the entropy and linex. But, the IMSE of   λMLE is 

smaller than the IMSE of the Bayesian estimators. If n Is high, 

then, all the Bayesian estimators perform better than the MLE 

estimators and the generalized quadratic loss function provides 

the best values of the IMSE. 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 271



 

 

 

IV. CONCLUSION 

In this paper, we compared bayesian estimators of the right-

truncated Weibull distribution under different loss functions. 

In the Bayesian estimation, for each loss function, we obtained 

the suitable parameter which optimize the bayesian estimation. 

Then, our Monte Carlo study showed that the entropy loss 

function provides the smallest posterior risks. These selected 

bayesian estimators are compared to the maximum likelihood 

estimators of the parameters using the Pitman closeness 

criterion and the integrated mean square error. Then, using our 

exhaustive Monte Carlo procedure, we showed that when n Is 

small, the Bayesian estimators are better for α and T and not 

for λ. If n is enough high, the MLE’s are closer to the true 

values but provide the highest IMSE than the bayesian 

estimators. To improve this paper, one can study the 

robustness aspects of these estimators and complete this 

comparison. 
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