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Posterior analysis of the compound truncated
Weibull under different loss functions for
censored data.

Khawla BOUDJERDA, Assia CHADLI, and Hocine FELLAG.

Abstract—In this paper, the Bayesian analysis of right truncated
Weibull distribution is considered under type Il censored data. Bayes
estimators and corresponding risks have been derived using
symmetric and asymmetric loss functions. Bayesian estimators of the
parameters have not explicit forms, so we cannot solve analytically
and that's why we applied the Monte-Carlo methods to find the
results, especially the Metropolis-Hastings algorithm. Finally, we use
Pitman closeness criterion and integrated mean square error (IMSE)
to compare Bayesian and likelihood estimators (MLE).
Keywords—Bayes estimators, generalized quadratic loss function,
Linex loss function, Risk loss function Pitman criterion, Metropolis-
Hastings algorithm.

I. INTRODUCTION

TRUNCATED statistical distributions arise when a random
variable X follows a known distributional model, except
that a portion of the sample space cannot be observed. If
values of the random variable falling below a certain lower
limit T are not observed at all, the distribution is said to be
truncated on the left at T. A truncated distribution is defined as
a conditional distribution that results from restricting the
domain of the statistical distribution. Hence, truncated
distributions are used in cases where occurrences are limited to
values which lie above or below a given threshold or within a
specified range. If occurrences are limited to values which
lie below a given threshold, the lower (left) truncated
distribution is obtained. Similarly, if occurrences are limited to
values which lie above a given threshold, the upper (right)
truncated distribution arises (see, e.g, Dusit and Cohen
(1984)). Wingo (1988) proposed point estimation
of parameters for a doubly truncated Weibull distribution.
Mittaland (1989) investigated the problem of existence of the
MLE for the truncated Weibull distribution, where the
truncation point is assumed to be known. Martinez (1991)
studied the MLE of parameters of the upper truncated Weibull
distribution. Shalaby and El-Yousef (1993) presented
bayesian estimates of parameters for a doubly truncated
Weibull distribution and Shalaby (1993) discussed the
Bayesian risk of the estimation. Seki and Yokoyama (1993)
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developed a simple and robust estimation method for the
Weibull and truncated Weibull parameters. Balakrishnan and
Mitra (2012) applied the EM algorithm to estimate the
parameters of Weibull distribution when the model is
truncated at left and data are right censored.
The Weibull distribution is a very popular distribution for
modeling lifetime data. Indeed, left truncation and right
censoring are often observed in lifetime data. For example,
failures during the warranty period may not be counted. Items
may also be replaced after certain timen following the
replacement policy, so that failures of the item are ignored.
Also, the truncated Weibull distribution can be used in several
engineering fields (see Zutter et al, 1986, Maltamo et al, 2004,
Palahi et al, 2007). Several authors have studied the parameter
estimation of the truncated Weibull distribution and its
application. Zhang and Xie (2011) studied the characteristics
of the upper truncated Weibull distribution and parameter
estimation by graphical approach. Kantar and Usta (2015)
proposed, for the first time, the use of upper-truncated Weibull
distribution, in modeling wind speed data and also in
estimating wind power density. Using wind speed data
measured in various regions of Turkey, upper-truncated
Weibull distribution can be an alternative for use in the
assessment of wind energy potential.
In this paper, we study the estimation of the right-truncated
Weibull distribution which depends on three parameters. Two
approaches are proposed. The first one is the classical
maximum likelihood estimation (MLE). The second one is the
Bayesian procedure performed under the generalized quadratic
(GQ), the entropy and the linex loss functions. Using an
exhaustive Monte- Carlo study, we compare the Bayesian
estimators with respect the posterior risks (PR).
Then, we select the best estimator given by each loss function.
These three bayesian estimators are compared to the maximum
likelihood estimator (MLE) using Pitman closeness
criterion and the integrated mean square error (IMSE).
The rest of this paper is organized as follows. In section 2, we
present the model and the problematic. The section 3 deals
with the maximum likelihood estimation. In section 4, we
propose the Bayesian estimators under various loss functions
and different prior distributions.

A Monte -Carlo study is proposed in section 5.
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Il. THE MODEL The k™ moment of the right truncated Weibull distribution is
Consider a random variable distributed according to the right given bywthe following formula
truncated Weibull distribution with the parameters (o> 0, B> EX)=[totea, 2 T)= %r(%ﬂ), k=123...
0) and the density given by: ° 1- )
A1 t i
& ( ) e ) "
Ot ATy — PR . LIKELIHOOD ESTIMATION
_ ef(—) Consider a n-sample (ty, t,... t,) generated from right-truncated
(24 . .
The corresponding reliability function is defined as follows Weibull model and a fixed constant m € {1, 2,... . n}. The data
are assumed to be censored with type 1. i.e. The observations
R(tier, 4, T)=1—-G(t;, 2, T)  (2) (ty, t, ..., tyy) are observed only. The likelihood function is then
t)” T,
_e Y _?r (ff) o=t=T
1 e*(;)
the failure rate is
. _ gt x, A, T) 3
h(t,oc,ﬁ,,T)fiR(t o A,T) ( )
& ( ) e ]
t T 0=t=<T
e*(g) ,e*(g)
a,AT)= nt ﬂmafmﬁl_[t’ . Z( ) _( ) _( )/1 o _( ) OﬁtST
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We propose the following notations n
prop g . e, .T) = () bi(a-n))+min i-miha+(1-0Y It -S+(-nyho-niny (5)
_ e oo liy o i
(tler, 2,8) = In L(tler, 2,7); S 7%“(2) P 71;[ti The MLE estimators of the three parameters o, A and T are
And solutions of the vectorial equation
I(tjer, 2,T) =0

T
—)
) Then, the likelihood equations are as follows

o

tiJ T
o=@ e v=a-g¢
Then, we have

0 m)./l q) \1} 0<t<T. (4)

And the corresponding logarithm is

I‘a,/,T
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Zlnt —minag——+(MN-m)—2-n—2=0
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After algebraic transformations, we obtain the following non linear system
(my2 &y T, -y
_ (tmye ()e“ (—)'e -«
m2+i8+(n m) & wntlal g
o o ()] o v
T T O toy by (D T T -0
et et InC)C)e ™ —ineye i) e
_ Sy ZL)(SL)A — — =0.
a+§ n(06) le n(0{)(0[) +(n—-m) o n v
) T Ly
( )” (—)'e = .
(n— m) A —n A =0
O T 2
the R package BB which has high capabilities for solving a
There is no analytical solution of this system. Then, we need nonlinear system of equations (Varadhan and Gilbert, 2009).

numerical methods to obtain approximate values of the
maximum likelihood estimators’ o g, AmLe, and Ty e Of the
parameters o, A, and T respectively. In this paper, we will use
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Il BAYESIAN ESTIMATION UNDER DIFFERENT LOSS FUNCTIONS

Prior and posterior distributions

In this section, we consider the prior distribution of (o, A)
(Shalaby and El-Youssef, 1993) defined as follows

C

(e, A) <« A aPe “,a,A>=0;a=1b,c=0

i ﬂm—aa
T

7z(a,/’L,T|t) =

—mA—b P A—1

Volume 10, 2016

Moreover, we choose the improper prior of T, which not
depend on (a, A) and given by n(T)=1/T. Then, the prior of
(o, A, T) IS

C

w(x, A, T) =n(cx,A)7z(T) = Ti/”faafbei;.

Moreover, we obtain the posterior density

c

e TTa@nr g
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Where
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A. Loss functions

AT ag M b pile S L My g od AdT

We consider the generalized quadratic (GQ), the Linex and the
entropy loss functions. The following table presents these loss
functions and the expressions of the Bayesian estimators with
The corresponding posterior risks (PR).

Ot=—3}
Ot=3}
Ot}
H|p

Loss function expression Bayes estimator posterior risk

Generalized quadratic  L{#, 4 (@) (e — 4)* deg I;_?_'_'_'f:__.'f’l: E ({88 — bz ._;.'l" |
Entropy Lig.d) = (5)F —pin(5) — 1 ig = |EL (@) F1F P f ..';u.|{,'-'| — In| ":
Linex Li#8)=e8 8 —prid—8V—1 4 T1|'i'i|_}"_'=:'| ) i"I-.;_-L-. — 'l; |

Under the generalized quadratic loss function assuming

Tan. 1: The loss functions and the corresponding bavesian estimators and posterior risk of the
parameters

Notice that, when =1, we have the basic quadratic loss.
Under the entropy loss function, we obtain the following
estimators

7(0)=6"", the Bayes estimators are given by the formulas 1mem g =
e g o :kp[j”fa*mﬂ*bfumfaplfl cprmyp- "dadAdT]P
I7] Sa AT IR e T a @ MY M dadAdT 200 T
00 00 00 _l
Qg = 0000000001 < /1 k%[jjjla,mkbﬂmfam Pﬂ—l “(Dn mg - ”dadﬂdT] p
J‘J‘J‘ia—mxhb—ﬂ—l/lm—apﬂ—le a @MY "d d AdT %% T
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aCQ_ooooool 7573 000
J.”'?a‘m’“b*”‘lxlm‘aP’l‘le “®""Y "dadAdT  The posterior risks are
000
T p-1__ -mi-b qm-apA-1 7575 n—mygy -n
o _!_([!T a ™A EpAile T @MY "dadAdT PRz, ) = PE. (In(a) — In(ap)):
CQ ™ wwa _g_C PR(A:) = pE,(In(1) —In(Ap));
p-2 ,—mi-b gm-apAi-1 a dhN—M\gy —n g
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o
o
o

The corresponding posterior risks are then
PR(eq) = E. (") =2 oo E. (@”) + (e E. (@)

following estimators Under the Linex loss function, we obtain
the

@ ==K [2am i epeie T oy dadAdT]
r
PR(Aeq) = E,(¥™) =2  E.(¥)+ 1o, E.(¥™) ) 00 01
T 00 00 00 _ 777r1
. 2 4y A=K [[[Eamamepite S m My dadadT
PR(Teg) = E, (T7) 2T (B, T+ THE () A= ][5 :
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The corresponding posterior risks are
PR(aL) = r(aQ _aL); PR(/lL) = r(ﬂ'Q _/IL); PR(TL) = r(TQ _TL)
Since, we cannot calculate the analytical expressions of all
these estimators; we will use MCMC procedures as
Metropolis-Hastings algorithm in the following Monte Carlo
section.

IV MONTE CARLO STUDY

In this section, we propose to perform a Monte Carlo study
assumingthata=2,b=c=1,0a=1,A=2.0and T = 1.5. Then,
using N = 1000 samples of the right truncated model, we
obtain the following results.

A. Likelihood estimation

Since analytical formulas are not available, to obtain the
maximum likelihood estimators, we need to use numerical
procedures. In this section we will use the R package BB
which presents very high performances for non linear systems.
In particular, we need the function BB solves in BB for our
problem. This function offers a reliable, low-cost method to
solve large-scale nonlinear systems of equations (Varadhan
and Gilbert, 2009). The results are as follows:
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parameter mle

m
7

10 0.6951%0.0929%

1.9800(0.0003
1.9452(0.1660
0.9036(0.0092)

2,0003(1,07.107"
1.6203(0.0144)

30 21

50

35 0.9364%0.0040%

2.0367(0.0013
100 70 0.9943(3,22 10-5)

200

1.5945(0.0089
2.0368%0.0013;
140
2.0957(0.0091

1.5149(0.0002
1.6457%0.0212§

A>e|ld>eld>e|d>e|d>=e

268

0.9268(0.0053
Tab. 2: The MLE of the parameters with quadratic error (in brackets

We remark that the estimated values of o and A are close to the
true values of parameters. However, the estimation of T Is not
close to the true value.

B. Bayesian estimation

The bayesian estimators are obtained with performing the
MCMC methods. The table 1 presents the bayesian estimations
and the corresponding posterior risks, in brackets, under the
generalized quadratic loss function. We remark that the value
= —2 gives us the best posterior risk and then improve the
basic quadratic case. Also, we obtain the smallest suitable
posterior risk when n is high. This is illustrated by the figure 1.
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1=
T i pParameter -2 -1.5 -1 .5 0.5 1.5 ]
L T fa 1. Oz IR LR B 1.0aE1 11026 1.1111 1.1 1. 1198 1. 1242
(0.O0TE) (O.00E1 ) I lat=0 ] (OO09E ) (0.0102) (00108
A 1.3350 1 4307 1 65445 1 11 i 19225
(0. 1309) (0.1696) (D.2583) (0_3835)
T 1.2€ 1_3085 1.3921 - 1. 5043
(.G 14) (00714 (o024 (0. L0SE0) (0.1134) (0.1234)
30 21 fa 10849 108582 108950 1059584 1. 1018 1. 1052
(0.O0EL) N la =N (OLOOTL) OO0 T4 (O.D0TE) (00032
A 1.3014 D36 1 5072 1. T146 1. 8128 1. 8970
(0.0TOS) (0.1310) (O.1T13) (2651 (O.3567) 0.3951)
T 1.1737 1.2446 1.3661 1 <kttt L. 47935
(.42 (DL OGS (018 (0.1124) (0.1218)
a0 35 fa 10750 1.OTE3 1L.OS1T 10852 108922 105993 1. 1029
(O.O05T) {0 DOED ) (0.O0E3) (O.O0ET) (OO ) (00085
Y 1.1997 1.2713 13590 15699 L. 8740
(2724 (04201}
T ™ 1 _5<ki6- 1. 3880 1 G50
(D.OE12) (L0951 (O, LOED) (0.1182) (0. 1290
L0 T fa 12014 12075 1. 205859 1. 2100 1.2112
(D001 (o025 (OL027) (O.D0D3E0Y) (0.0033)
A 2. 2002 200 p! 2. 2021 22034 22041 2o20ET 220
alalaley] (00003 [0_D00SE) (OO0 19) (00028 [(O.D0D42Y) (00062
T B 1= 1702y B 170300 1_7TO57T 1. 1. TOT3E L. 7081
OS] CONNNT ) {0 OOy (00012 Il l=0 Iy (OL027) (0.DD3E) (00047
210000 1400 fa S22 JZ2118 1.2]1¢ 1. 2138 2157 1. 2167 1. 2176 1. 21886
LO01E) L0014 (00017 (00021 (O.DD25) (00025
A 15504 TR 1. 1915 21929 2. 1941 2T
(o DR ) _OnDE ) (O N ) (OO0 ) (O D20} [ OnD-E=4 ) [ O DHS
T 1. 7005 LTO1E 1.702] 1. 7028 17043 1 24 L7
(O O005) Ralaalch] (0L OO0 (0.0 (OO0 L9 (0.DD33) (00044

Tar. 3: Bayes estimators and PR (in brackets) under generalized guadratic loss function

=

Figurel. Posterior risks of a, A and T under generalized
quadratic loss function
With the entropy loss function, we obtain the following table
where we can notice that the value p = —0.5 and the cases
n =100 and n = 200 provide the best posterior risk.

Fal
LL LLE PArAIMeter [ 1 1.5 =]
Loy r ¥ 1. L. LD L. LS | L. L2
(O.O0IE) O OOy [(O.ODES ) (.01 5-1)
A I. 74891 Y
(O.Os03) [ STE
T 1.43 1 32402
(O.0O2E1) [ [(O.OE08E) (O 1248 )
30 21 ¥ 1. 1 OaEs 1= 1L.0S52
(O.0031) (O OO0T ) [O.003E0) [0.00E9) (D.0123)
A 1.7T146 30 1. 4977 1396
LDG3G)
T B
[O_007TE)
S0 35 ¥ L -4
A
(ST
T 1.3850 -
(O.0301) (D.OTLT)
[IEWTa] T ¥ 1. 20550 2 1256 L. 201
D) MOO2) [ e (O0.0021)
A 2041 2 131 25 2 32 -k
o 1 (O 00ooD2) o 02 i 3
T 1 1. T0E0 1. TS L. TOS3 4_TO=EE
] (000107 (0h D004 ) (000 ) [0 00T ) [0 000 ) (000100 (001D
200 140y ¥ 1 1.216 1. 2162 1. 2152 1. 2147 12143 1.2138
{C (00007 (00001} (00001} (00007} (0017 (O 031 )
A 2 1 1. 1932 11925 1L.1915 L. 1915
(0. (. (OO0 T ) (O_000E ) (0007 ) (D00 12
T L. E L. 53] 1.7 iy TN} L. 52 L. 7028
(OO0 1T) (OO 10) (O D1 ) (OO L ) (OO L) (OO L0 (OO LT}

Tar. 4 Bayes estimators and PR (in brackets) under entropy loss function

The following figure illustrates well this situation.
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. Figure2. Posterior risks of a, > and T under Linex loss
function
Under the linex loss function, the results are given in the
following table.
r
mn I DPATAIMELEr -2 -1.5 -1 0.5 0.5 1 1.5 2
10 T o 1.1252 1.12258 1.1203 11179 T 1131 1107 I.1083 1.1050
(0.0195) | (0.0108) | (0.o048) | (0.0012) | (00012} | (0.0048) | (0.0107) | (D.o1e1)
) 1.0603 1.9301 15500 5204 [6703 [ 5802 1.5120 14431
(0.4403) | (0.2714) | (0.1317) (0.0394) | (0.1599) | (0.3556) | (0.4303)
1 1.5 1.5016 14805 4059 3788 1.3515 1.3248
(0.1764) | (0.1038) | (0.0451) (00131} | (0.0535) | (0.1212) | (0.2150)
30 | 21 o 1.1059 1.1040 11021 1002 10965 0946 1.0928 1.0000
(0.0150) | (0.0084) | (0.0037) | (0.0009) | (D.0009) | (0.0037) | (0.3576) | (0.6106)
) 1.6446 1.6035 18518 17885 [ 6330 14762 14003
(0.4588) | (0.2833) | (0.1372) | (0.0369) | (0.0403) (0.3576) | (0D.6106)
T T 4040 TA758 14546 [ 4314 [ 3514 13271 13013
(0.1767) | (0.1039) | (0.0480) | (0.0124) | (0.0130) | (0.00527) | (001190) [ (0.2104)
50 | 35 o 1.1036 11016 1.0007 10977 10938 L0918 1.0E0D 1.0880
(0.0156) | (0.0088) | (0.00389) | (0.0009) | (Dooo9) | (0.0038) | (0.0087) | (0.0154)
) 19271 1.5821 1.525 17580 I 5072 I 5155 1.4411 13770
(0.4939) | (0.3029) | (0.1457) | (0.0389) | (D.0414) | (0.1646) | (0.3586) | (0.6063)
T 1.4822 1.4615 1.4388 14141 13609 13336 1.3068 1.2511
(0.1884) | (0.1103) | (0.0508) | (0.0130) | (0.0135) | (0.0543) | (0.1217) | {0.2136)
100 | 70 o 1.2117 1.2110 1.2103 12095 12082 2075 1.2068 1.2062
(0.005 (0.0031) | (0.0013) | (D.0003) | (Do003) | (00014} | (0.0031) | (0.0056)
A 2 2060 2 2062 2 2055 2 2048 22034 22026 2.2010
(0.0056) | (0.0031) | (0.o014) | (0.0003) | (00003) | (0.0014) | (0.0031)
T 17003 1.T086 1.7079 17072 17058 17051 1.7044
(0.0056) | (0.0031) | (0.0013) | (0.0003) | (0oo03) | (0.0013) | (0.0031)
200 | 140 o 1.2100 1.2154 1.2178 12173 1 2161 2155 1.2143 1.2143
(0.0047) | (0.0026) | (0.0011) | (0.0002) | (0.0002) | (0.0011) | (0.0026) | (0.0046)
i) 3 1058 2 1051 2 1643 Z 1928 21920 21913 2 1005
507 | (0.0033) | (o.0014) | (0.0003) | (0.0003) | (0.0015) | (D.0034) | (0.0060)
1 T.707T 17071 17064 17058 7015 7038 1.7031 1.7025
(0.0051) | (0.0029) | (0.0012) | (0.0003) | (D.0003) | (0.0012) | (0.0029) | (0.0051)

Tap. 52 Bayes estimators and PR (in brackets) under Linex loss function '

One can notice that the value r = —0.5 provides the best PR
(see figure 3).

If we compare the three loss functions, we notice that the
entropy loss function provides the best Bayesian estimator of
Figure2. Posterior risks of a, A and T under the Entropy a, A and T. This Is illustrated by the following table
loss function
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m TEn AT EALITLALET meneralized guadracic{ & — 2 Entropyw { p—-10.5) Limnex{r—-.5]
L T fa L. =] L. 117
>
A
T
Z0 21 '
A
Sl 35 E
Y
-
10 i Y
A
-
pe{nln} 1 <0y Pt
A .
o
| . 1
0. o
Tar. 6: Bayes estimators and PR (in brackets) under the tree loss functiomns

A. Comparison with the likelihood estimators

In this section, we propose to compare the best Bayesian
estimators obtained above with the maximum likelihood
estimator. For this, we propose to use the following criterions:
the Pitman closeness (Pitman, 1937, Fuller, 1982 and Jozani,
2012) and the integrated mean square error (IMSE) defined as
follows:

Definition 5.1 An estimator 0, of a parameter 6 dominates in
the sense of Pitman closeness criterion another estimator 6, if
forall 6 € ®

P,l6....6 <|6, —6|]- 0.5
Consider the estimates 6; (i=1... N) Obtained with N samples
of the model.

Definition 5.2 the integrated mean square error is defined as
N

2.(0,-0)*
IMSE = = N

In the following, we present the values of the Pitman
probabilities which allows us to compare the bayesian
estimators with the MLE under the tree loss functions where
B=-2,p=-0.5 and r =—0.5. The Table 5 should be read as
follows : when the probability Is greater than 0.5, the bayesian
estimator Is better than the MLE estimator. Then, we notice
that, according to this criterion

- When n is not high, the Bayesian estimators ag and Tg of o
and T are better than the MLE’s oy e and Tye. The
generalized quadratic loss function provides the best values.
However, Mg IS closer to the true value than all the bayesian
estimators.

- When n is high, the MLE of the three parameters perform
better than the Bayesian estimators.

ISSN: 1998-0159
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I
10 7 o

Linex(r—-0.5)
b.654
).159

Entropie(p=-0.5)
0.638
0.130
0.556
0.109
0.480
0.514
0.087
0.393
0.146
0.136
0.376
).087 IZ
).221 IZ
1278

30

50

100 | 70 o

200 | 140 | o

Tak. 7: Pitman comparaison of the estimators of o, A and T

The Table 6 presents the values of integrated mean square
error (IMSE) of the estimators Bayesian of the parameters
under the tree loss function, and the maximum likelihood
estimators.

According to this criterion, when n Is small, the Bayesian
estimators g and Tg provide the smallest IMSE for a and T
comparatively to ap e and Ty e. Also, the values provided by
the generalized quadratic loss function are relatively
equivalent to the entropy and linex. But, the IMSE of Ay is
smaller than the IMSE of the Bayesian estimators. If n Is high,
then, all the Bayesian estimators perform better than the MLE
estimators and the generalized quadratic loss function provides
the best values of the IMSE.
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n m | parameter mleo QG Entropie | Linex
10 T o 0.26095 (| 0.0080 0.0221 0.0190
A 0.1184 | 0.4333 0. i 0.3696
T 0.3278 | 0.1034 | 0.1070 | 0.7038
30 | 21 o 0.1031 | 0.000% | 0.0168 | D.0154
A 0.0686 | 0.3%22 0.3938 0.3205
T 0.257% | 0.1036 0.1107 0. 1087
50 35 o 0.0702 | 0.0114 00167 0157
A 0.0551 | 0.4181 0.4275 0.4230
T 0.2437 | 0.1125 0.1191 01175
10 | 70 ) 0.0872 | 0.0380 00460 0.0445
A 0.0520 ( 0.0191 0.0438 0.0362
T 0.2840 | 0.0321 0.0449 | 0.042]
200 140 o 01908 | 0.1624 01672 0.1663
A 0.5467 | 0.5287 0.5493 0.5432
T 0.4838 | 0.3167 | 0.3263 0.3242

Tar. & The IMSE of the estimators of a,A and T

IV. CONCLUSION

In this paper, we compared bayesian estimators of the right-
truncated Weibull distribution under different loss functions.
In the Bayesian estimation, for each loss function, we obtained
the suitable parameter which optimize the bayesian estimation.
Then, our Monte Carlo study showed that the entropy loss
function provides the smallest posterior risks. These selected
bayesian estimators are compared to the maximum likelihood
estimators of the parameters using the Pitman closeness
criterion and the integrated mean square error. Then, using our
exhaustive Monte Carlo procedure, we showed that when n Is
small, the Bayesian estimators are better for a.and T and not
for A. If n is enough high, the MLE’s are closer to the true
values but provide the highest IMSE than the bayesian
estimators. To improve this paper, one can study the
robustness aspects of these estimators and complete this
comparison.
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